Magnetic levitation ( maglev) or magnetic suspension is a method by which an object is suspended with no support other than . Lorentz force is used to counteract the effects of the gravitational force and any other forces.
The two primary issues involved in magnetic levitation are lifting forces: providing an upward force sufficient to counteract gravity, and stability: ensuring that the system does not spontaneously slide or flip into a configuration where the lift is neutralized.
Magnetic levitation is used for maglev trains, contactless melting, , and for product display purposes.
Essentially all types of magnets have been used to generate lift for magnetic levitation; , , ferromagnetism, diamagnetism, superconducting magnets, and magnetism due to induced currents in conductors.
To calculate the amount of lift, a magnetic pressure can be defined.
For example, the magnetic pressure of a magnetic field on a superconductor can be calculated by:
For example, the simplest example of lift with two simple repelling is highly unstable, since the top magnet can slide sideways or flip over, and it turns out that no configuration of magnets can produce stability.
However, (spinning/roation), the use of diamagnetic materials, superconduction, or systems involving allow stability to be achieved.
In some cases the lifting force is provided by magnetic repulsion, but stability is provided by a mechanical support bearing little load. This is termed pseudo-levitation.
Earnshaw's theorem proved conclusively that it is not possible to levitate stably using only static, macroscopic, paramagnetic fields. The forces acting on any paramagnetic object in any combinations of gravitational, electrostatic, and magnetostatic fields will make the object's position, at best, unstable along at least one axis, and it can be in unstable equilibrium along all axes. However, several possibilities exist to make levitation viable, for example, the use of electronic stabilization or diamagnetic materials (since relative magnetic permeability is less than one); it can be shown that diamagnetic materials are stable along at least one axis, and can be stable along all axes. Conductors can have a relative permeability to alternating magnetic fields of below one, so some configurations using simple AC-driven electromagnets are self stable.
For the case of a static magnetic field, the magnetic force is a conservative force and therefore can exhibit no built-in damping. In practice many of the levitation schemes are marginally stable and, when non-idealities of physical systems are considered, result in negative damping. This negative damping gives rise to exponentially growing oscillations around the magnetic field's unstable equilibrium point, inevitably causing the levitating object to be ejected from the magnetic field.
Dynamic stability on the other hand, can be achieved by spinning a permanent magnet having poles slightly off the rotation plane (called tilt) in constant speed within a range which can hold another dipole magnet in the air.
For the magnetic levitation scheme to be stable, negative feedback from an external control system can be also used to add damping to the system. This can be accomplished in a number of ways:
The primary ones used in maglev trains are servo-stabilized electromagnetic suspension (EMS), electrodynamic suspension (EDS).
If two are mechanically constrained along a single axis, for example, and arranged to repel each other strongly, this will act to levitate one of the magnets above the other.
Another geometry is where the magnets are attracted, but prevented from touching by a tensile member, such as a string or cable.
Another example is the Zippe-type centrifuge where a cylinder is suspended under an attractive magnet, and stabilized by a needle bearing from below.
Another configuration consists of an array of permanent magnets installed in a ferromagnetic U-shaped profile and coupled with a ferromagnetic rail. The magnetic flux crosses the rail in a direction transversal to the first axis and creates a closed-loop on the U-shaped profile. This configuration generates a stable equilibrium along the first axis that maintains the rail centered on the flux crossing point (minimum magnetic reluctance) and allows to bear a load magnetically. On the other axis, the system is constrained and centered by mechanical means, such as wheels.
Stable magnetic levitation can be achieved by measuring the position and speed of the object being levitated, and using a feedback loop which continuously adjusts one or more electromagnets to correct the object's motion, thus forming a servomechanism.
Many systems use magnetic attraction pulling upward against gravity for these kinds of systems as this gives some inherent lateral stability, but some use a combination of magnetic attraction and magnetic repulsion to push upward.
Either system represents examples of ElectroMagnetic Suspension (EMS). For a very simple example, some tabletop levitation demonstrations use this principle, and the object cuts a beam of light or Hall effect sensor method is used to measure the position of the object. The electromagnet is above the object being levitated; the electromagnet is turned off whenever the object gets too close, and turned back on when it falls further away. Such a simple system is not very robust; far more effective control systems exist, but this illustrates the basic idea.
EMS magnetic levitation trains are based on this kind of levitation: The train wraps around the track, and is pulled upward from below. The servomechanism controls keep it safely at a constant distance from the track.
These kinds of systems typically show an inherent stability, although extra damping is sometimes required.
An especially technologically interesting case of this comes when one uses a Halbach array instead of a single-pole permanent magnet, as this almost doubles the field strength, which in turn almost doubles the strength of the eddy currents. The net effect is to more than triple the lift force. Using two opposed Halbach arrays increases the field even further. S&TR | November 2003: Maglev on the Development Track for Urban Transportation . Llnl.gov (2003-11-07). Retrieved on 2013-07-12.
Halbach arrays are also well-suited to magnetic levitation and stabilisation of and spindles of and generators.
This effect requires non-ferromagnetic but highly conductive materials like aluminium or copper, as the ferromagnetic ones are also strongly attracted to the electromagnet (although at high frequencies the field can still be expelled) and tend to have a higher resistivity giving lower eddy currents. Again, litz wire gives the best results.
The effect can be used for stunts such as levitating a telephone book by concealing an aluminium plate within it.
At high frequencies (a few tens of kilohertz or so) and kilowatt powers small quantities of metals can be levitated and melted using levitation melting without the risk of the metal being contaminated by the crucible.
One source of oscillating magnetic field that is used is the linear induction motor. This can be used to levitate as well as provide propulsion.
A permanent magnet can be stably suspended by various configurations of strong permanent magnets and strong diamagnets. When using superconducting magnets, the levitation of a permanent magnet can even be stabilized by the small diamagnetism of water in human fingers. Diamagnetically stabilized magnet levitation . (PDF). Retrieved on 2013-07-12.
According to Lenz's law, this opposes the external field. Diamagnets are materials with a magnetic permeability less than μ0 (a relative permeability less than 1). Consequently, diamagnetism is a form of magnetism that is only exhibited by a substance in the presence of an externally applied magnetic field. It is generally quite a weak effect in most materials, although superconductors exhibit a strong effect.
Diamagnetic levitation can be used to levitate very light pieces of pyrolytic graphite or bismuth above a moderately strong permanent magnet. As water is predominantly diamagnetic, this technique has been used to levitate water droplets and even live animals, such as a grasshopper, frog and a mouse. "The Frog That Learned to Fly" . Radboud University Nijmegen. Retrieved 19 October 2010. For Geim's account of diamagnetic levitation, see Geim, Andrey. . Physics Today. September 1998. pp. 36–39. Retrieved 19 October 2010. For the experiment with Berry, see Berry, M. V.; Geim, Andre. (1997). . European Journal of Physics 18: 307–313. Retrieved 19 October 2010. However, the magnetic fields required for this are very high, typically in the range of 16 teslas, and therefore create significant problems if ferromagnetic materials are nearby. Operation of this electromagnet used in the frog levitation experiment required 4 megawatt (4000000 watts) of power.
The minimum criterion for diamagnetic levitation is , where:
Assuming ideal conditions along the z-direction of solenoid magnet:
These principles are exploited by EDS (Electrodynamic Suspension), superconducting magnetic bearing, , etc.
A very strong magnetic field is required to levitate a train. The SCMaglev trains have superconducting magnetic coils, but the SCMaglev levitation is not due to the Meissner effect.
The first discovery of this phenomenon was by Roy M. Harrigan, a Vermont inventor who patented a levitation device in 1983 based upon it. Several devices using rotational stabilization (such as the popular Levitron branded levitating top toy) have been developed citing this patent. Non-commercial devices have been created for university research laboratories, generally using magnets too powerful for safe public interaction.
This is used in particle accelerators to confine and lift charged particles, and has been proposed for maglev trains as well.
The highest recorded speed of a maglev train is 603 kilometers per hour (374.69 mph), achieved in Japan on 21 April 2015; 28.2 km/h faster than the conventional TGV speed record. Maglev trains exist and are planned across the world. Notable projects in Asia include Central Japan Railway Company's superconducting maglev train and Shanghai's maglev train, the oldest commercial maglev still in operation. Elsewhere, various projects have been considered across Europe and Northeast Maglev aims to overhaul North America's Northeast Corridor with JR Central's SCMaglev technology.
The driving platform PCB was built with multiple layers of wire traces like a voice coil actuation. Shown in figure [8] there are four layers of wires in the PCB board which represents two sets placed perpendicular to each other that stand for X and Y direction movement. From top to bottom, the order comes in XYXY that cross each other evenly and same axis were interlaced to control actuation. Since the force created by every layer must be the same on the circuit, deeper layers need higher current to transmit the same magnetic force to the robots on top. Set of currents with 0.25A, 0.33A, 0.5A, and 0.7A were used at SRI. One square of the above 4-layer system acts as a zone on the driving platform. This enables the circuit to control multiple robots in the same zone easily, but each robot cannot move separately. However, the platform can be divided into multiple zones which enable the separate control of robots in different zones.
Finally, a thin layer of pyrolytic graphite (500 um) acts as diamagnetic layer, placed on the top to provide stable levitation. Thin copper (15 um) placed above the graphite was used in earlier versions of the system for eddy current damping.
On moving from 1 to 2, the first trace path is turned off while the second is turned on. This causes the magnets to move to their new equilibrium, toward the higher magnetic flux density.
Repeating this procedure with opposite currents on the same trace paths, a movement in the desired direction is produced.
To find the velocity, the forces on the microrobot must be analyzed (fig. [9]). The microrobot is supposed to levitate and so no friction forced is produced, other than the air drag which is also not considered.
The force produced by the interaction of the magnetic moments of the microrobot and the flux density of the serpentine traces is:
The magnetic moment vector, given the orientation requirement for the diamagnetic levitation, is:
Meanwhile, the contribution to the B field by the 2 closest traces is:
Since for this approximation is not dependent on y or z, their derivatives are zero and only force in the x direction is produced:
This is the only force applied on the magnet, and it can be equated to the robot's mass multiplied by its acceleration. This equation can be integrated to find the velocity of the microrobot:
Introducing the relation between magnet volume, mass, and density in the previous equation cancels out the mass, which means that if more magnets are added (N number of magnets), force will increase linearly:
This is the expression for the robot speed as a function of the current.
For a second DOF, more traces must be added. Two more intertwined serpentine traces must be added below the existing ones, rotated 90 degrees, to generate forces in the Y direction. Intensity on these traces will have to be higher to account for the higher distance.
Diamagnetic levitation can produce two effects on a micro robot. The first is reducing the sliding friction and the second is fully levitating the micro robot. The fully levitation system will be the focus. To produce passive levitation a diamagnetic layer (such as graphite) must exist in the presence of a ferromagnet (such as NdFeB). Diamagnetic materials are characterized by having negative susceptibility, induced magnetic moment opposite to the external magnetic field. For that reason, they are repelled by an external magnetic field and tend to move toward the field minimum. This repulsive force is a result of the diamagnets having a magnetization direction antiparallel to the external magnetic fields.
The magnetizations of diamagnetic materials vary with an applied magnetic field which can be given as:
Where is the magnetic field strength and is the dimensionless susceptibility. For an object with volume , the induced magnetic moment m can be given by:
The magnetic force acting on the object is there for described as:
If the object has density and is levitating in a medium with density and magnetic susceptibility the total energy of the object, with a magnetic and gravitational term, is:
Such that the resulting force becomes:
The necessary condition for stability is:
To calculate the whole diamagnetic force acting on the levitated materials, each single dipole of the diamagnetic material must be considered. The diamagnetic force for the entire volume can be expressed as:
The diamagnetic repulsion force is proportional to the magnetic susceptibility of diamagnetic materials. To counteract gravity in the magnetic field, materials with strong diamagnetism and lightweight properties are preferred.
Here, I' is the equivalent surface current density, B_r is the remanent magnetic field of the magnet, and μ_0 is the permeability of free space, given by:
The surface current density I^' is directly proportional to the remanent magnetic field B_r, which is a measure of the magnet's residual magnetization after an external magnetic field is removed. This property is crucial for the magnet's performance in applications such as magnetic levitation, where maintaining a stable and strong magnetic field is essential. To calculate the magnetic field generated by permanent magnets, we can use an approach based on the Biot-Savart law applied to finite-size rectangular current sheets. This method involves modeling the magnets as an assembly of such sheets, allowing for the calculation of the three components of the magnetic field B ⃗_z at any point in space. By applying this law to a finite-size rectangular current sheet, we can compute the magnetic field by integrating the contributions from all current elements within the sheet. For a rectangular sheet carrying a surface current density I', the magnetic field at a point z ⃗ can be determined by summing the contributions from each infinitesimal segment of the sheet. To model a permanent magnet, we consider it as a stack of such current sheets. The total magnetic field B _z at any point is the superposition of the fields generated by each sheet. This superposition is expressed mathematically as:
where represents the magnetic field contribution from the i-th current sheet. This method provides a comprehensive way to calculate the magnetic field components of permanent magnets, enabling precise modeling of their magnetic behavior in various applications, such as magnetic levitation, where accurate field distribution is crucial for stability and performance.
where (a point on the filament 0
Such that we can write the as:
with , ,
Finally, the magnetic field of a straight current-carrying filament is derived as:
is perpendicular to the filament and α is the aspect ratio of the sheet. The width of the sheet is:
The field from the displaced filament is then given by replacing the parameters A, B and C by their s-dependent counterparts given by:
Then, we spread out the current evenly across the sheet width:
The magnetic field of a finite current sheet can be derived as
Such that we can write the as:
where , , , , ,
Finally, the magnetic field of a finite Current Sheet is organized as:
where
Having the magnetic field extracted from the magnet, we now try to use it in the levitation application. Diamagnetic materials possess a unique property: they repel magnetic fields, seeking regions of minimal field intensity. This behavior enables the levitation of diamagnetic materials above strong magnetic fields, a phenomenon demonstrated vividly in the Levitated Frog Experiment. Understanding these fundamental principles has paved the way for innovative technologies such as magnetic levitation in Microrobots. Diamagnetically levitated milli- and micro-robots offer precise control and minimal force noise, ensuring intrinsic stability and efficient zone control. Leveraging diamagnetic levitation, these robots experience reduced sliding friction and can achieve full levitation when paired with a diamagnetic layer, such as graphite, in the presence of a ferromagnet like NdFeB. Diamagnetic materials, characterized by negative susceptibility and an induced magnetic moment opposing the external field, are repelled by magnetic fields, naturally gravitating towards field minima. This repulsion arises from diamagnets' magnetization direction being antiparallel to the external field, enabling passive levitation and facilitating advanced control strategies.
For levitating a magnet, the net forces acting on it in Z direction should be zero. The free body diagram is shown below:
For levitating a diamagnetic particle the below equation should apply:
The diamagnetic particle with density and magnetic susceptibility is levitating in a medium with density and magnetic susceptibility . In this case the only way the net force is going to be zero is when: . The difference of our problem is we are trying to levitate a magnet on a diamagnetic surface sheet and not the other way around. That’s why there should be justification in the formulation above:
The parameter is debatable and further investigation is needed to assign the actual value for it, because when the magnet is the object levitating, the magnetic field produced by it is not going to cover the whole volume of the diamagnetic surface sheet. The depth of penetration and the effective surface should be calculated. (note that χ_dia is negative so there’s at least one solution for the equation).
In the free body diagram above, two other forces are visible Fx and Fy. In order to explain that lets go through the term ∇(B ⃗⋅B ⃗ ) and expand it. Magnetic field density is a vector function displayed like below:
The third term which is should be compared with the gravity force. The first and second term should be zero for the magnet to have a stable levitation. Further investigation is needed.
To find the distance the magnet is being levitated from, the equation below should be solved:
Based on the magnet we choose, we can derive the behavior of the Magnetic field in space . For solving the equation numerically, and using magnetic field as a vector function (which it is), there’s going to be a z=d which:
For simplifying this |B_(x,y) |≪|B_z |,|(∂B_z)/∂x|≪ |(∂B_z)/∂z| ,|(∂B_z)/∂y|≪ |(∂B_z)/∂z|, problem before solving this, a paper (R. Engel–Herbert and T. Hesjedal , “ Calculation of the magnetic stray field of a uniaxial magnetic domain,” reported:
Which will make the calculations lighter:
At the end by calculating the Bz by equations explained earlier and put it into this, we’ll can solve the problem of levitation by founding out in which height the equation above works.
Simulation Parameters and Results
Consider a 3x3 array of NdFeB magnets, each with a pole size of 1 mm and a thickness of 0.4 mm. The simulations of the diamagnetic force as a function of the distance from the magnet surface are illustrated in Fig. 5. These simulations provide critical insights into the force profile experienced by the micro robot at varying heights above the magnet array.
Additionally, Fig. 6 shows the component (the magnetic flux density in the z-direction) at the magnet's surface. This component is to understand the magnetic field distribution, which directly influences the levitation and stability of the micro robot.
Magnetic Field of a Single Sheet for Permanent Magnets
Effects of Diamagnetic Levitation
Historical beliefs
History
See also
External links
|
|